7095 measured reflections

 $R_{\rm int} = 0.087$

3280 independent reflections

1899 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Methyl-N-(2-methylphenyl)-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide. Corrigendum

Feng Xu and Weixiao Hu*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 1 July 2009; accepted 29 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; Hatom completeness 95%; R factor = 0.064; wR factor = 0.170; data-to-parameter ratio = 15.3.

The formula of the title compound in the paper by Xu & Hu [Acta Cryst. (2008), E64, o1432] is corrected.

In the paper by Xu & Hu [Acta Cryst. (2008), E64, o1432], the chemical formula is corrected and the structure has been rerefined to include a missing H atom. The Crystal data, Data collection and Refinement sections are updated together with the hydrogen-bond data.

Experimental

Crystal data

0 -
$V = 1594.8 (11) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 293 (2) K
$0.12 \times 0.10 \times 0.06 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.990, \ T_{\max} = 0.995$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O^i$	0.93	2.56	3.385 (3)	148

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

References

Xu, F. & Hu, W. (2008). Acta Cryst. E64, o1432. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Methyl-N-(2-methylphenyl)-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide

Feng Xu and Weixiao Hu*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China Correspondence e-mail: huyang@mail.hz.zj.cn

Received 18 June 2008; accepted 2 July 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.073; wR factor = 0.193; data-to-parameter ratio = 13.8.

In the title compound, C₁₇H₁₆N₅O, the central tetrazine ring adopts an unsymmetrical boat conformation with the two C atoms as flagpoles. This compound can be considered as having homoaromaticity. The crystal structure is stabilized by intermolecular C-H···O interactions between a benzene H atom and the carbonyl O atom.

Related literature

For related literature, see: Hu et al. (2004, 2005); Jennison et al. (1986); Sauer (1996); Stam et al. (1982); Xu et al. (2006).

Experimental

Crystal data	
$C_{17}H_{16}N_5O$	a = 13.941 (6) Å
$M_r = 306.35$	b = 5.675 (2) Å
Monoclinic, $P2_1/c$	c = 20.614 (8) Å

$\beta = 102.055 \ (6)^{\circ}$
$V = 1594.9 (11) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.193$ S = 0.943116 reflections 226 parameters

6815 measured reflections 3116 independent reflections 1882 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.084$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 291 (2) K

 $0.12 \times 0.10 \times 0.06 \text{ mm}$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6-H6···O ⁱ	0.93	2.56	3.385 (3)	148
Symmetry code: (i)	$x_{1} - v + \frac{3}{2} \cdot z - \frac{1}{2}$			

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2060).

References

- Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.
- Hu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291-293.
- Jennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem. 51, 3043-3051.
- Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856-2858.
- Xu, F., Hu, W.-X., Zhou, W. & Xia, C.-N. (2006). Acta Cryst. E62, o2875-o2876.

Acta Cryst. (2008). E64, 01432 [doi:10.1107/S1600536808020199]

6-Methyl-N-(2-methylphenyl)-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide

F. Xu and W. Hu

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5-tetrazine has four isomers, namely 1,2-, 1,4-, 1,6-, and 3,6-dihydro-1,2,4,5-tetrazines. The 1,6-dihydro structures (Stam *et al.*, 1982; Jennison *et al.*, 1986) were found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure–activity relationship of 1,6-dihydro-1,2,4,5-tetrazine derivatives (Hu *et al.*, 2004, 2005), we report the crystal structure of the title compound (I) (Fig. 1).

In the tetrazine ring, atoms N1, N2, N3 and N4 are coplanar, while atoms C1 and C2 deviate from the plane by 0.597 (3) and 0.225 (3)°, respectively. The N1/C1/N4 and N2/C3/N3 planes make dihedral angles of 42.3 (2)° and 19.7 (2)°, respectively, with the N1–N4 plane, *i.e.* the tetrazine ring adopts an unsymmetrical boat conformation. The C3–C8 benzene ring make dihedral angles of 13.2 (1)°, with the N1–N4 plane. N1 is almost sp^2 hybridized due to the angles around it add up to 359.6 (2)°. In keeping with similar situations in 3-phenyl-6-ethyl-1,6-dihydro-1,2,4,5-tetrazine (Stam *et al.*, 1982), 3-(*p*-chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Xu *et al.*, 2006) and 1-acetyl-3,6-dimethyl-1,2,4,5-tetrazine (Jennison *et al.*, 1986), it can be considered that the molecule is homoaromatic.

The Fig. 2 shows that intramolecular C—H···O hydrogen bonds form a pseudo-five-membered ring. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···O interactions between a benzene H atom and the O atom of carbonyl group, with a C6—H6···Oⁱ separation of 3.385 (3) Å (Table 1; symmetry code as in Fig. 2).

Experimental

6-methyl-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine (0.25 ml, 3.1 mmol) were mixed. 1-isocyanato-2-methylbenzene (3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,6-dihydro-1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, dichloromethane system), evaporation of the chloroform, crude *N*-(*o*-methylphenyl) 3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide was obtained and purified by preparative thin-layer chromatography over silica gel PF254 (2 mm) (dichloromethane:petroleum ether = 1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction. m.p. 378–380 K. Spectroscopic analysis: ¹H NMR (CDCl₃) δ p.p.m.: 8.64 (s, 1H), 8.14–8.16 (m, 2H, ArH), 7.92 (d, 1H, J = 8.0 Hz), 7.52–7.55 (m, 3H, ArH), 7.22 (m, 2*H*, ArH), 7.08 (t, 1H, J = 7.2 Hz), 6.91 (q, 1H, J=6.4 Hz), 2.34 (s, 3*H*), 1.09 (d, 3H, J = 6.8 Hz).

Refinement

The positions of H atoms bound to C17 and N5 were obtained from difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}$ for aromatic H atoms.

Figures

Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.

Fig. 2. C—H…O interaction (dotted line) in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.]

6-Methyl-N-(2-methylphenyl)-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide

Crystal data	
C ₁₇ H ₁₆ N ₅ O	$F_{000} = 644$
$M_r = 306.35$	$D_{\rm x} = 1.276 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = 378–380 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 13.941 (6) Å	Cell parameters from 742 reflections
b = 5.675 (2) Å	$\theta = 3.2 - 24.8^{\circ}$
c = 20.614 (8) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 102.055 \ (6)^{\circ}$	T = 291 (2) K
$V = 1594.9 (11) \text{ Å}^3$	Prism, red
Z = 4	$0.12 \times 0.10 \times 0.06 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3116 independent reflections
Radiation source: fine-focus sealed tube	1882 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.084$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.5^{\circ}$
ϕ and ω scans	$h = -17 \rightarrow 8$

Absorption correction: multi-scan	$k = -6 \sqrt{7}$
(SADABS; Sheldrick, 1996)	$\kappa = -0 \rightarrow /$
$T_{\min} = 0.980, \ T_{\max} = 0.995$	$l = -25 \rightarrow 25$
6815 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.1133P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.193$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.94	$\Delta \rho_{max} = 0.54 \text{ e } \text{\AA}^{-3}$
3116 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
226 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.031 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0	0.79549 (13)	0.2358 (3)	0.73526 (8)	0.0685 (5)
N1	0.82379 (14)	0.4541 (3)	0.64939 (9)	0.0552 (5)
N2	0.79315 (13)	0.5181 (3)	0.58485 (9)	0.0522 (5)
N3	0.88534 (17)	0.8632 (4)	0.61618 (12)	0.0685 (6)
N4	0.91853 (17)	0.7948 (4)	0.67409 (12)	0.0724 (6)
N5	0.68918 (15)	0.2115 (4)	0.63448 (10)	0.0598 (6)
H5N	0.6759 (17)	0.282 (4)	0.5967 (12)	0.054 (6)*
C1	0.91906 (18)	0.5354 (4)	0.68427 (11)	0.0587 (6)
C2	0.83633 (17)	0.7032 (4)	0.56768 (11)	0.0526 (6)
C3	0.82173 (17)	0.7755 (4)	0.49788 (12)	0.0542 (6)
C4	0.77371 (19)	0.6256 (5)	0.44798 (12)	0.0644 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4	0.7490	0.4824	0.4592	0.077*
C5	0.7624 (2)	0.6873 (6)	0.38197 (14)	0.0813 (9)
H5	0.7307	0.5853	0.3491	0.098*
C6	0.7975 (2)	0.8971 (6)	0.36496 (16)	0.0825 (9)
Н6	0.7889	0.9392	0.3205	0.099*
C7	0.8452 (3)	1.0452 (6)	0.41287 (18)	0.0876 (10)
H7	0.8701	1.1870	0.4009	0.105*
C8	0.8571 (2)	0.9862 (5)	0.47985 (15)	0.0788 (8)
H8	0.8889	1.0897	0.5123	0.095*
C9	0.76906 (18)	0.2904 (4)	0.67787 (11)	0.0535 (6)
C10	0.61865 (18)	0.0506 (4)	0.64801 (11)	0.0559 (6)
C11	0.6437 (2)	-0.1223 (5)	0.69669 (13)	0.0724 (8)
H11	0.7077	-0.1329	0.7210	0.087*
C12	0.5740 (3)	-0.2762 (6)	0.70856 (15)	0.0883 (10)
H12	0.5905	-0.3910	0.7412	0.106*
C13	0.4807 (3)	-0.2619 (6)	0.67292 (18)	0.0928 (11)
H13	0.4330	-0.3646	0.6817	0.111*
C14	0.4564 (2)	-0.0944 (6)	0.62345 (16)	0.0817 (9)
H14	0.3926	-0.0891	0.5987	0.098*
C15	0.52429 (19)	0.0652 (4)	0.60974 (12)	0.0601 (7)
C16	1.00241 (18)	0.4238 (5)	0.65920 (13)	0.0658 (7)
H16A	1.0013	0.2564	0.6656	0.099*
H16B	1.0636	0.4865	0.6832	0.099*
H16C	0.9955	0.4575	0.6128	0.099*
C17	0.4969 (3)	0.2482 (6)	0.55605 (17)	0.0790 (8)
H17A	0.431 (3)	0.232 (5)	0.5290 (16)	0.102 (10)*
H17B	0.543 (2)	0.223 (5)	0.5212 (15)	0.092 (9)*
H17C	0.511 (3)	0.408 (7)	0.5726 (16)	0.107 (11)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0755 (12)	0.0808 (13)	0.0475 (10)	-0.0050 (9)	0.0090 (8)	0.0014 (7)
N1	0.0491 (11)	0.0653 (12)	0.0486 (10)	-0.0056 (10)	0.0039 (8)	0.0001 (8)
N2	0.0469 (11)	0.0556 (11)	0.0529 (11)	-0.0018 (9)	0.0077 (8)	0.0026 (8)
N3	0.0682 (14)	0.0511 (12)	0.0823 (15)	-0.0009 (10)	0.0067 (12)	-0.0101 (10)
N4	0.0740 (15)	0.0636 (14)	0.0742 (15)	-0.0012 (11)	0.0030 (12)	-0.0181 (11)
N5	0.0537 (12)	0.0737 (14)	0.0501 (12)	-0.0109 (10)	0.0064 (10)	0.0102 (9)
C1	0.0521 (15)	0.0578 (14)	0.0616 (14)	-0.0068 (12)	0.0015 (11)	-0.0095 (10)
C2	0.0488 (13)	0.0424 (12)	0.0658 (14)	0.0002 (11)	0.0098 (11)	-0.0017 (9)
C3	0.0427 (13)	0.0485 (13)	0.0722 (15)	0.0022 (10)	0.0137 (11)	0.0085 (10)
C4	0.0610 (16)	0.0681 (16)	0.0637 (15)	-0.0068 (13)	0.0123 (12)	0.0116 (11)
C5	0.0763 (19)	0.101 (2)	0.0649 (16)	-0.0060 (17)	0.0117 (14)	0.0133 (14)
C6	0.0736 (19)	0.095 (2)	0.0832 (19)	0.0109 (18)	0.0271 (16)	0.0321 (17)
C7	0.094 (2)	0.0653 (19)	0.115 (3)	-0.0012 (17)	0.047 (2)	0.0308 (17)
C8	0.084 (2)	0.0583 (17)	0.098 (2)	-0.0070 (15)	0.0271 (16)	0.0097 (14)
C9	0.0520 (14)	0.0604 (14)	0.0484 (13)	0.0014 (11)	0.0111 (11)	-0.0033 (10)
C10	0.0597 (15)	0.0570 (14)	0.0548 (13)	-0.0092 (12)	0.0210 (11)	-0.0027 (10)

C11	0.0846 (19)	0.0703 (17)	0.0646 (15)	-0.0100 (15)	0.0209 (14)	0.0082 (12)	
C12	0.119 (3)	0.080 (2)	0.0732 (18)	-0.028 (2)	0.035 (2)	0.0027 (14)	
C13	0.106 (3)	0.089 (2)	0.097 (2)	-0.042 (2)	0.053 (2)	-0.0174 (18)	
C14	0.0644 (18)	0.090 (2)	0.096 (2)	-0.0193 (16)	0.0277 (16)	-0.0261 (17)	
C15	0.0571 (16)	0.0621 (15)	0.0645 (14)	-0.0049 (12)	0.0205 (12)	-0.0115 (11)	
C16	0.0513 (15)	0.0635 (16)	0.0779 (16)	-0.0031 (12)	0.0029 (12)	0.0007 (11)	
C17	0.064 (2)	0.078 (2)	0.087 (2)	0.0031 (17)	-0.0032 (17)	-0.0037 (16)	
Geometric param	neters (Å, °)						
О—С9		1.204 (3)	С7—	C8	1.39	7 (4)	
N1—N2		1.359 (3)	C7—	H7	0.93	00	
N1—C9		1.406 (3)	C8—	C8—H8		00	
N1—C1		1.447 (3)	C10–	C10—C15		1.388 (4)	
N2—C2		1.296 (3)	C10–	C10—C11		1.395 (4)	
N3—N4		1.249 (3)	C11-	C12	1.366 (4)		
N3—C2		1.416 (3)	C11-	-H11	0.9300		
N4—C1		1.487 (3)	C12-	C13	1.35	1.356 (5)	
N5—C9		1.351 (3)	C12—H12		0.9300		
N5-C10		1.412 (3)	C13–	C13—C14		1.383 (5)	
N5—H5N		0.86 (2)	C13—H13		0.9300		
C1—C16		1.506 (3)	C14—C15		1.381 (4)		
C2—C3		1.469 (3)	C14—H14		0.9300		
C3—C8		1.374 (4)	C15–	C17	1.50	8 (4)	
C3—C4		1.394 (4)	C16–	-H16A	0.96	00	
C4—C5		1.382 (4)	C16–	-H16B	0.96	00	
C4—H4		0.9300	C16–	-H16C	0.96	00	
С5—С6		1.361 (4)	C17–	-H17A	0.98	(4)	
С5—Н5		0.9300 C17—H17B		1.07 (3)			
С6—С7		1.360 (5) C17—H17C		0.97 (4)			
С6—Н6		0.9300					
N2—N1—C9		119.9 (2)	0—0	C9—N5	127.	3 (2)	
N2—N1—C1		118.0 (2) O—C9—N1		119.9 (2)			
C9—N1—C1		121.7 (2)	N5—C9—N1		112.8 (2)		
C2—N2—N1		114.5 (2)	C15-	-C10-C11	121.	1 (2)	
N4—N3—C2		120.2 (2)	C15-	-C10-N5	117.	7 (2)	
N3—N4—C1		115.6 (2)	C11—C10—N5		121.1 (2)		
C9—N5—C10		126.5 (2)	C12-	-C11-C10	119.	9(3)	
C9—N5—H5N		115.8 (16)	C12-	-C11-H11	120.	1	
C10—N5—H5N		117.0 (16)	C10–	-C11—H11	120.	1	
N1-C1-N4		105.6 (2)	C13–	-C12-C11	120.	2 (3)	
N1-C1-C16		112.9 (2)	C13–	C12H12	119.	9	
N4—C1—C16		110.4 (2)	C11–	-C12-H12	119.	9	
N2—C2—N3		120.7 (2)	C12-	C12—C13—C14		0 (3)	
N2—C2—C3		121.1 (2)	C12–	C12—C13—H13		0	
N3—C2—C3		117.4 (2)	C14-	-С13—Н13	120.0		
C8—C3—C4		118.4 (2)	C15–	C14C13	122.0 (3)		
C8—C3—C2		121.6 (2)	C15–	-C14-H14	119.)	
C4—C3—C2		120.0 (2)	C13–	C13—C14—H14)	

C5—C4—C3	120.7 (2)	C14—C15—C10	116.9 (2)
C5—C4—H4	119.7	C14—C15—C17	121.5 (3)
C3—C4—H4	119.7	C10—C15—C17	121.5 (2)
C6—C5—C4	120.2 (3)	C1-C16-H16A	109.5
С6—С5—Н5	119.9	C1-C16-H16B	109.5
С4—С5—Н5	119.9	H16A—C16—H16B	109.5
C7—C6—C5	120.1 (3)	C1-C16-H16C	109.5
С7—С6—Н6	120.0	H16A—C16—H16C	109.5
С5—С6—Н6	120.0	H16B—C16—H16C	109.5
C6—C7—C8	120.6 (3)	C15—C17—H17A	114.5 (19)
С6—С7—Н7	119.7	C15—C17—H17B	107.6 (16)
С8—С7—Н7	119.7	H17A—C17—H17B	104 (2)
C3—C8—C7	120.1 (3)	C15—C17—H17C	112.6 (19)
С3—С8—Н8	120.0	H17A—C17—H17C	113 (3)
С7—С8—Н8	120.0	H17B—C17—H17C	105 (3)
C9—N1—N2—C2	166.3 (2)	C4—C3—C8—C7	-0.5 (4)
C1—N1—N2—C2	-21.5 (3)	C2—C3—C8—C7	177.5 (3)
C2—N3—N4—C1	10.6 (3)	C6—C7—C8—C3	1.0 (5)
N2—N1—C1—N4	52.3 (3)	C10—N5—C9—O	1.3 (4)
C9—N1—C1—N4	-135.5 (2)	C10—N5—C9—N1	-178.6 (2)
N2—N1—C1—C16	-68.4 (3)	N2—N1—C9—O	-179.1 (2)
C9—N1—C1—C16	103.7 (2)	C1—N1—C9—O	8.9 (3)
N3—N4—C1—N1	-45.4 (3)	N2—N1—C9—N5	0.8 (3)
N3—N4—C1—C16	77.0 (3)	C1—N1—C9—N5	-171.2 (2)
N1—N2—C2—N3	-19.4 (3)	C9—N5—C10—C15	152.7 (2)
N1—N2—C2—C3	171.32 (19)	C9—N5—C10—C11	-29.4 (4)
N4—N3—C2—N2	25.8 (3)	C15-C10-C11-C12	-2.0 (4)
N4—N3—C2—C3	-164.6 (2)	N5-C10-C11-C12	-179.8 (2)
N2—C2—C3—C8	171.8 (2)	C10-C11-C12-C13	0.3 (4)
N3—C2—C3—C8	2.2 (3)	C11—C12—C13—C14	1.4 (5)
N2—C2—C3—C4	-10.2 (4)	C12-C13-C14-C15	-1.6 (5)
N3—C2—C3—C4	-179.8 (2)	C13-C14-C15-C10	0.0 (4)
C8—C3—C4—C5	0.3 (4)	C13-C14-C15-C17	-179.5 (3)
C2—C3—C4—C5	-177.7 (2)	C11-C10-C15-C14	1.8 (3)
C3—C4—C5—C6	-0.5 (4)	N5-C10-C15-C14	179.7 (2)
C4—C5—C6—C7	1.0 (5)	C11-C10-C15-C17	-178.7 (3)
C5—C6—C7—C8	-1.2 (5)	N5-C10-C15-C17	-0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C6—H6····O ⁱ	0.93	2.56	3.385 (3)	148
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$.				

Fig. 1

